翻訳と辞書 |
Hyperbolic growth : ウィキペディア英語版 | Hyperbolic growth
When a quantity grows towards a singularity under a finite variation (a "finite-time singularity") it is said to undergo hyperbolic growth.〔See, e.g., Korotayev A., Malkov A., Khaltourina D. (Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth ). Moscow: URSS Publishers, 2006. P. 19-20.〕 More precisely, the reciprocal function has a hyperbola as a graph, and has a singularity at 0, meaning that the limit as is infinite: any similar graph is said to exhibit hyperbolic growth. ==Description== If the output of a function is inversely proportional to its input, or inversely proportional to the difference from a given value , the function will exhibit hyperbolic growth, with a singularity at . In the real world hyperbolic growth is created by certain non-linear positive feedback mechanisms.〔See, e.g., Alexander V. Markov, and Andrey V. Korotayev (2007). ("Phanerozoic marine biodiversity follows a hyperbolic trend". Palaeoworld. Volume 16. Issue 4. Pages 311-318 ).〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hyperbolic growth」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|